If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+20x-12=0
a = 18; b = 20; c = -12;
Δ = b2-4ac
Δ = 202-4·18·(-12)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{79}}{2*18}=\frac{-20-4\sqrt{79}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{79}}{2*18}=\frac{-20+4\sqrt{79}}{36} $
| 41=2w+13 | | 7(1+5x)=-98 | | (3x)(2x)=180 | | -2p+4=16 | | 3w+13=37 | | K/12=z | | 6x-10=21x+5 | | 4=v/2-9 | | 4=v2-9 | | -2c-10=8c | | -36=18x | | 18g-g-17g+2g-g=10 | | 5+0.43=x | | 14p+p+p-10p=12 | | 3y-3y+2y=14 | | 2a+-6a=-20 | | 4x+2(x-3)=0A | | 107-u=195 | | 3u+6u-7u=12 | | (10x-2)+(9x+5)=180 | | 16z+4z-19z+3z+4z=16 | | 4c=44=c | | 9x+1=812x | | 2k-2k+k+4k=5 | | 10c-10c+3c=12 | | (6+2x)=(x+85) | | 13a-11a=12 | | 9x-(6x-14)=43 | | 13a-11=12 | | 2p^2+6p-8=0 | | 18g-11g=14 | | 10.1-w=5.3 |